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The nuclear reaction network within the interior of the Sun is an efficient MeV physics factory,
and can produce long-lived particles generic to dark sector models. In this work we consider the
sensitivity of satellite instruments, primarily the RHESSI Spectrometer, that observe the Quiet Sun
in the MeV regime where backgrounds are low. We find that Quiet Sun observations offer a powerful
and complementary probe in regions of parameter space where the long-lived particle decay length
is longer than the radius of the Sun, and shorter than the distance between the Sun and Earth.
We comment on connections to recent model-building work on heavy neutral leptons coupled to
neutrinos and high-quality axions from mirror symmetries.

I. INTRODUCTION

It has long been recognized that the solar interior can
serve as an efficient factory for keV-scale physics beyond
the Standard Model (BSM), e.g. solar axions and dark
photons [1–8]. In addition to thermal production mecha-
nisms, nuclear reactions within the Sun may also source
BSM particles up to masses and energies of roughly
15 MeV [4, 9–14]. If a flux of long-lived particles (LLPs)
in this energy regime emanates from the solar interior,
they may transit toward the Earth and their decay prod-
ucts can leave detectable signatures. It is important to
emphasize that LLPs are generic consequences of a dark
sector with relatively light particles and feeble couplings
to the SM [15–18]. As decay lengths become long, LLPs
become increasingly difficult to detect and strategies to
attack this “lifetime frontier” are valuable tools in the
search for BSM physics. This idea has been previously in-
vestigated, largely considering FERMI-LAT, in the high
energy, i.e. ≳ 100 MeV, regime for annihilating dark mat-
ter [19–22].

In this work we point out that existing data from the
RHESSI satellite spectrometer [23], which observed the
Quiet Sun,1 can place interesting limits on dark sectors
with LLPs in the range of O(100 keV)−O(1MeV). This
is an old idea, first proposed by Stodolsky and Raffelt in
1982 in the context of a 200 keV axion [9], however, it
has remained unexplored despite new data in the inter-
vening decades [24]. We illustrate the potential sensitiv-
ity of Quiet Sun data with a number of BSM examples,
emphasizing different production mechanisms which may
operate in this mass window. A conservative analysis of
existing data from RHESSI is capable of offering compli-
mentary constraints on production mechanisms involv-
ing neutrino upscattering, and can probe previously un-
touched regions of parameter space for axion like particles
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1 Time periods without intense surface activity such as solar flares.

(ALPs) with masses close to ∼ 1 MeV. Upcoming mis-
sions, such as the COSI satellite [25, 26], may be able to
substantially improve on the capabilities of RHESSI by i)
taking advantage of a larger instrument surface area, ii)
making use of dead time to carefully study backgrounds,
and iii) taking advantage of distinctive spectral features.

We focus on LLPs that decay primarily to photons,2
and have decay lengths, ℓLLP, that satisfy

R⊙ ≪ ℓLLP ≪ d⊙ , (1)

where R⊙ is the radius of the Sun and d⊙ is the dis-
tance from the Sun to the Earth. This allows an O(1)
fraction of the LLPs to decay en-route to the satellite in-
strument. In this limit, the flux of LLPs will never reach
any terrestrial experiment since they will decay in flight
and their daughter photons will be absorbed in the up-
per atmosphere. In this sense, Quiet Sun observations
are complimentary to terrestrial searches for LLPs from
the Sun such as those that have been performed by CAST
[10] and Borexino [11].

We perform a straightforward (and conservative) rate-
only analysis the details of which can be found at the
end of Section II. In the body of the paper we organize
our discussion along the lines of specific BSM scenarios.
We discuss neutrino upscattering in Section II and so-
lar axion production in Section III. We also spend time
focusing on model-independent LLP constraints in Sec-
tion IV. In Section V we discuss the physics potential for
dark sector searches using future missions such as COSI.
We close by summarizing our results in Section VI.

2 We could also consider decays to e+e− pairs but an analysis is
complicated by the magnetic fields that surround the Earth.
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II. NEUTRINO UPSCATTERING -
TRANSITION DIPOLE

We begin by considering a production mechanism in-
volving the upscattering of solar neutrinos transiting
through the Sun, e.g. νA → LLPA with a A a nucleus
such as hydrogen or helium (see e.g. [13, 14, 27] for re-
sults on neutrino upscattering in the Earth). This mech-
anism leverages the large solar neutrino flux which is co-
pious in the few-hundred keV region, and extends up to
∼ 15 MeV. Solar neutrinos have a small probability of
being absorbed in the SM because of the small charged
current scattering cross section at Eν ∼ MeV energies.
It is, however, possible to have BSM cross sections that
exceed the weak interaction at low energies if neutrinos
couple via a transition magnetic dipole moment [28, 29].
This can lead to sizable conversion probabilities into an
unstable right-handed neutrino, N (also called a heavy
neutral lepton or HNL), for neutrinos transiting from the
center to the surface of the Sun. As it is unstable, N
may decay in flight supplying a broad flux of photons
in RHESSI. Similar phenomena may occur in the after-
math of SN 1987A [30, 31] leading to tight limits below
the supernova floor derived in [28].

This “dipole portal” can dominate low energy phe-
nomenology since it is a dimension-five operator and com-
petes with the dimension-six four-Fermi contact interac-
tion at low energies. The effective Lagrangian is given
by

Lint ⊃
∑
α

dαF
µνN̄σµνPLνα . (2)

Here, dα represents the coupling between N and each
of the 3 SM neutrinos. In this work, we consider the
cases where N couples to a single flavor. This effective
interaction has been studied recently in the context of
accelerator, solar, atmospheric, and collider neutrinos as
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FIG. 1. The flux of solar HNLs at Earth (ignoring decays) as
calculated through the dipole model Monte Carlo simulation,
where mN = 0.75 MeV and dµ = 2× 10−11 MeV−1.
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FIG. 2. The flux of photons at RHESSI from N decays cal-
culated using a Monte Carlo integration with a 90◦ opening
angle, compared with the RHESSI background in the front
segment. Since the flux from decays exceeds the background,
we consider mN = 0.75 MeV, dµ = 2 × 10−11 MeV−1 to be
excluded.

well as in the context of early universe cosmology and
constraints from SN 1987A [28, 29, 32–56].

Unlike the monoenergetic LLP cases discussed later in
this paper, the spectrum of Eν (and hence EN ) spans
several orders of magnitude. For that reason, we imple-
ment a Monte Carlo integration to sample neutrino en-
ergy, production location, and upscattering location. We
also account for flavor transformation during the neu-
trino propagation (both due to adiabatic conversion and
oscillations).

We consider the Sun to be solely comprised of 1H and
4He with densities given by the Standard Solar Model
[57–59]. All scattering is calculated to be off free nu-
cleons, ignoring the coherent enhancement due to he-
lium. This only leads to an ∼ 10% change in the bounds,
which we will see is a much smaller effect than uncer-
tainty in the detector opening angle/background. The
cross section for scattering on a free proton is given by
dσdip = dσ1 + dσ2 with,

dσ1

dEr
=α(2d)2F 2

1

(
1

Er
− 1

Eν

+
m2

N (Er − 2Eν −mp)

4E2
νErmp

+
m4

N (Er −mp)

8E2
νE

2
rm

2
p

)
,

(3)

and

dσ2

dEr
=αd2µ2

nF
2
2

[
2mp

E2
ν

(
(2Eν − Er)

2 − 2Ermp

)
+m2

N

Er − 4Eν

E2
ν

+
m4

N

EνEr

]
.

(4)

Here, F1 and F2 are electromagnetic form factors, µn is
the magnetic moment of the nucleon in question, Er is the



3

10−1 100

mN [MeV]

10−12

10−11

10−10
d µ

[M
eV
−

1 ]

RHESSI 1◦
RHESSI 90◦
Borexino
Terrestrial Upscatter
CMB
BBN
SN 1987A

FIG. 3. Excluded parameter space for a muon neutrino transi-
tion dipole moment. Along with our bounds, we show 90% CL
exclusions from Borexino e− ν scattering [29, 63], terrestrial
solar neutrino upscattering [14], Supernova 1987A [28], big-
bang nucleosynthesis and the cosmic microwave background
[29]. For RHESSI excluded parameter space, we include ex-
clusions from taking a 1◦ opening angle and a 90◦ opening
angle. The star represents the parameter point show in Fig. 1
and Fig. 2.

recoil energy, and mp is the proton mass [60, 61]. Since
the neutrino energy is much less than the proton mass,
the HNL energy EN is nearly identical to the neutrino
energy Eν . Thus, the flux of HNLs has similar features
to the solar neutrino flux (see Fig. 1).

The HNL has decay channels N → ναγ. We consider
the ν to be massless, and the decays to be isotropic in the
rest frame of the HNL.3 The decay length is calculated
as

λ =
4π

d2αm
3
N

γβ. (5)

The Monte Carlo simulation samples locations for N
decays along with the energy and direction of the de-
cay photon. This is used to calculate the resulting pho-
ton flux with respect to energy and angle observed by
RHESSI. We consider opening angles of 1◦ and 90◦,
where we reject all photons arriving at larger angles. The
background flux observed by RHESSI is calculated by us-
ing the reported number of counts and effective area of
the front segment (ignoring narrow peaks) [23]. We re-
ject a parameter point if the flux from N decays exceeds
the observed flux at any energy (see Fig. 2).

Our resulting exclusion curves from the RHESSI data
are shown in Fig. 3 for a muon neutrino dipole coupling.

3 In complete generality the HNL may have some angular correla-
tion with its polarization, but this depends on the details of the
model e.g. Dirac vs. Majorana neutrinos [62] and we neglect this
in what follows.
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FIG. 4. Excluded parameter space of a transition dipole mo-
ment for each of the three active neutrinos. We see that the
constraints all take a similar form, only varying by O(1) fac-
tors.

We find that RHESSI data can offer a complimentary
(and direct) probe of regions of parameter space that are
already probed by SN-1987A. Constraints are strongest
in the low mass region (sub-MeV), and this may also be
probed using coherent elastic neutrino nucleus scattering.
We see that the exclusions for the three neutrino flavors
all have similar values in Fig. 4.

III. HEAVY SOLAR AXIONS

Another production mechanism is solar axions with en-
ergies in excess of Ea ≳ 500 keV. These energies are too
high to allow for thermal production (except for in expo-
nentially suppressed tails), and so the background photon
fluxes are much smaller than for typically considered keV
solar axion searches. The study of MeV-scale solar ax-
ions has a long history, and they have been searched for
in terrestrial experiments such as Borexino and CAST
[10, 11]. As we discuss below, satellite measurements of
the Quiet Sun provide a complimentary probe that excels
for decay lengths that are short relative to the Earth-Sun
distance.

It is worth highlighting recent work on model build-
ing for axions with an extended matter content [64–67].
These models are motivated by the axion quality problem
and seek to protect the axion against Planck suppressed
corrections. The simplest mechanism to achieve this is
to simply break the canonical relation fama ≈ fπmπ and
to allow for ma to be “heavy” relative to predictions of
conventional (i.e. DSVZ [68, 69] or KSVZ [70, 71]) axion
models. It is interesting to note that these independent
model building considerations often push the mass and
couplings of the axion into regions of parameter space
that are well suited for solar axion detection; we will
comment on this in great detail below. For instance,
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following the benchmark scenarios presented in [67] one
finds that masses in the ∼ 10 MeV regime with axion
decay constants fa ∼ 10−5 GeV−1 fall squarely within
the “natural” window of parameter space whilst simulta-
neously predicting a sizeable coupling to nucleons and a
decay length that is a few times longer than the radius
of the Sun. For slightly lighter axions, solar production
and detection is a useful complimentary probe.

The primary production mechanism for heavy solar ax-
ions is the p d → 3He γ reaction which takes place in the
solar pp chain. Other mechanisms are energetically al-
lowed, such as M1 transitions in the CNO chain [72],
and e+e− annihilation from 8B neutrinos in the solar in-
terior, however, we find that the production rates are
sufficiently small so as to be uninteresting.

The flux of axions (prior to decay) can be related to
the flux of pp neutrinos, and depends on the isovector
coupling of axions to nucleons g3aN [73]. The axions
must first escape the Sun and then decay before reaching
Earth. The escape probability depends both on axion
absorption and decay processes. Putting all of this to-
gether and setting BRaγγ = 1, we arrive at the flux of
axions arriving at a detector orbiting the Earth,

Φγ

Φ
(pp)
ν

= 0.54|g3aN |2
[
pa
pγ

]3[
e−R⊙/ℓabs − e−d⊙/ℓdec

]
, (6)

where ℓ−1
abs = ℓ−1

MFP + ℓ−1
dec with ℓ−1

MFP the averaged mean
free path in the Sun and ℓdec the axion decay length.
The coupling g3aN is the isovector coupling strength of
the axion to nucleons, and pa/pγ is the ratio of three-
momenta between an axion and photon emitted with
E = 5.49 MeV. The pp neutrino flux is given by Φ

(pp)
ν =

6×1010 cm−2s−1. We account for axion-absorption, Pri-
makoff scattering, and axion electron scattering in our
calculation of ℓ−1

MFP.
Our results are shown in Fig. 5. We note that our ex-

clusions depend on the axion nucleon coupling, captured
by g3aN , and the decay constant gaγγ . If gaγγ vanishes
at some scale µ = µ0, but gaee ̸= 0 then an effective
gaγγ ∼ (α/4π)gaee/me will be generated via a 1-loop tri-
angle diagram, and in this way one can re-cast our limits4
in terms of those on gaee. We do not include exclusions
from SN1987 typically plotted in the ma − gaγγ plane
because the values of g3aN that are required to produce
a sufficient axion flux in the Sun lead to axion trapping
within a core-collapse supernova [74].5 This is an im-
portant distinction between the hadronically coupled ax-
ion models we considered here vs. an axion like particle
which couples exclusively to photons (see e.g. [75]). The

4 This requires accounting for the branching ratio to photons, as
well as adjusting the decay length.

5 This occurs because axion-nucleon scattering leads to mean free
paths much shorter than the typical size of a supernova, trapping
the axions.
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FIG. 5. Contours of g3aN for which the solar axion flux of
photons would overwhelm the the RHESSI background mea-
surements for the front segments. Sensitivity is exhausted for
g3aN ∼ 1× 10−5 however further reach can be obtained with
better data and/or a more sophisticated analysis.

solar axion constraints we discuss here are therefore com-
plimentary to supernova cooling ones. If the axion nu-
cleon coupling, gaN , is large enough to evade SN-1987
bounds via self trapping then it is also large enough
to be probed with RHESSI data. Low energy super-
novae observations have been used to place constraints
on axions which decay in-flight and deposit energy to
the ejecta [76]. These constraints also disappear in the
strong coupling regime, and are complimentary to ours.
Constraints from NA62 [77], E787 [78], and E949 [79]
are subject to O(m4

K/m4
ρ) hadronic uncertainties in the

prediction of K → aπ [67, 80]. Finally, our constraints
on gaγγ lie above the ceiling of searches performed with
the Borexino collaboration [11] because we are sensitive
to decay lengths much shorter than d⊙. This is demon-
strative of the way in which constraints from solar axion
may compliment existing search techniques using acceler-
ator based experiments, underground detectors, and as-
trophysical constraints.

Constraints from big bang nucleosynthesis (BBN) will
generically apply both because the axions we consider
have lifetimes in the vicinity of a few seconds, and be-
cause the same reaction, p d → 3He γ, is a key driver of
BBN. In the absence of any additional dark sector decay
modes, measurements of Neff will generically exclude ax-
ions with masses below 5 MeV or so. These constrains
can be alleviated if the dark sector contains additional
degrees of freedom see e.g. [67]. Searches for gamma rays
from the Quiet Sun offer a complimentary direct probe
of axion (or other light particle) production that is inde-
pendent of early universe cosmology.

We consider a 90◦ opening angle for our signal, mean-
ing all decays between the Sun’s surface and Earth’s
orbit contribute. The monoenergetic nature of the
axion means the photon flux is constant in energy
(see Section IV for more details on monoenergetic pro-
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duction). We demand that this flux exceed 1.8 ×
10−3s−1cm−2keV−1 for photon energies above 1 MeV, so
that this flux is above the observed RHESSI background
flux in the front segments.

IV. MODEL-INDEPENDENT SEARCHES

Let us now consider a model-independent production
of LLPs (here called ϕ) which decay via ϕ → γγ. In this
simplified model, we consider all production to occur at
the solar center, and ϕ only interacts with SM physics
through its decay. We also assume there is no preferential
direction for decay in the rest frame of ϕ, so the flux of
photons is a uniform distribution between Eγ,min and
Eγ,max where Eγ,max/min = 1/2 × (Eϕ ±

√
E2

ϕ −m2
ϕ).

Inverting this equation, we find Eϕ ≥ Eγ + m2
ϕ/(4Eγ)

(we will call this lowest energy Eϕ,min). Therefore, if we
know the rate of production Rϕ and decay length λ as a
function of Eϕ, then we can determine the BSM flux of
photons at Earth.

dΦγ

dEγ
=

2

4πd2⊙
×∫ ∞

Eϕ,min

dEϕ
e−R⊙/λ(Eϕ) − e−d⊙/λ(Eϕ)√

E2
ϕ −m2

ϕ

dRϕ

dEϕ

(7)

One particularly well motivated morphology is where ϕ
has a mono-energetic production spectrum. This would
occur if ϕ is produced via a 2-body decay χ → ϕX or
via annihilation χχ → ϕX for vχ ≪ 1. Performing the
integral in Eq. (7) with a delta-function distribution leads
to a flux of photons that is constant in energy between
Eγ,min and Eγ,max.

FIG. 6. Comparison of photon fluxes for different ϕ produc-
tion scenarios. The fluxes are normalized so that the total
production rate is Nϕ = 1028s−1, and the decay length is
λ = 10R⊙ at Eϕ = 1MeV. We consider mϕ to be negligibly
small.

Remaining more agnostic to the source of ϕ produc-
tion, we may consider a power-law distribution with re-
spect to energy for Eb ≤ Eϕ ≤ Eu

dRϕ

dEϕ

∣∣∣∣
power

= Rc × Ec
ϕ Θ(Eu − Eϕ)Θ(Eϕ − Eb) . (8)

For mϕ ≪ Eγ , Eϕ the photon flux is calculable in closed
form,

dΦγ

dEγ

∣∣∣∣
power

=
2Rc

4πd2⊙

×
[(

R⊙Ẽ

λ̃

)c(
Γ
(
− c,

R⊙Ẽ

λ̃Eu

)
− Γ

(
− c,

R⊙Ẽ

λ̃El

))
−

(
d⊙Ẽ

λ̃

)c(
Γ
(
− c,

d⊙Ẽ

λ̃Eu

)
− Γ

(
− c,

d⊙Ẽ

λ̃El

))]
,

(9)

with Γ(a, x) the incomplete gamma function, El =

max{Eb, Eϕ,min}, and λ̃ is the decay length at charac-
teristic energy Ẽ. We normalize to the total rate of ϕ
produced, Nϕ. For the mono-energetic case, we have
Nϕ = Rϕ, while for the power-law production, we have

Rc =


Nϕ(c+1)

Ec+1
u −Ec+1

b

for c ̸= −1 ,

Nϕ

log(Eu/Eb)
for c = −1 .

(10)

Constraints on the number of ϕ produced per second in
the Sun are shown in Fig. 7. Constraints are set as de-
scribed at the end of Sections II and III.

V. FUTURE PROSPECTS

In the above discussion, we have found that re-
purposing existing RHESSI data is able to provide inter-
esting constraints on light dark sectors with MeV scale
LLPs. Our analysis should be viewed as a proof of prin-
ciple and certainly underestimates the sensitivity of ex-
periments like RHESSI to new physics models. The
major limitations in our analysis are a lack of reliable
peak-subtracted spectra and the ability to suppress back-
grounds (see [81] for recent work in the keV regime for
a more sophisticated statistical analysis). For example,
much of the background for RHESSI comes not from so-
lar activity but rather from cosmic ray interactions with
the Earth’s atmosphere i.e. the radiation comes from the
rear rather than forward field of view. Much of this back-
ground can presumably be suppressed (or perhaps elimi-
nated) with a future instrument, especially if a dedicated
search is performed. In what follows we sketch potential
improvements using a near-term MeV telescope. For con-
creteness we will anchor our discussion around the COSI
satellite.6

6 We thank Albert Shih for pointing out the COSI mission to us.
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(c) ϕ production with a linear dependence on energy (c = 1)

2 4 6 8 10
Eu [MeV]

1027

1028

1029

1030

1031

φ
Pr

od
uc

tio
n

R
at

e
[s
−

1 ]

λ/E =0.001R� /keV
λ/E =0.01R� /keV
λ/E =0.1R� /keV
λ/E =1.0R� /keV
λ/E =10.0R� /keV

(d) ϕ production inversely proportional to energy (c = -1).

FIG. 7. Exclusion of ϕ production for some of the special cases considered. Production rates above the lines are excluded. In
all cases, the mass is considered negligible, and there is no production below 10 keV (Eb = 10 keV).

RHESSI operated with minimal shielding to minimize
weight. This made the instrument an effectively “all sky”
observation with a high level of cosmic ray background
activity. In contrast COSI will operate with active shield-
ing, and its further use of Compton kinematic discrimina-
tion offers further background reduction [82]. Moreover,
ongoing work to better understand gamma ray emission
from the Quiet Sun will further improve on irreducible
backgrounds [83, 84].

Other strategies that could be pursued with a future
instrument are to go beyond the rate-only analysis pre-
sented above. For example, COSI will have 25% sky cov-
erage and excellent angular resolution. One could image
the MeV photon flux differential in both energy and angu-
lar position. Depending on the lifetime of LLPs a “halo”
of photons could be searched for outside the solar corona.
The shape of the photon distribution will be model de-
pendent, but can be computed using the Monte Carlo
simulations outline above. Similarly, taking advantage of

COSI’s large field of view, other local planetary systems
could be used to search for LLPs. This was suggested
recently in the context of Jupiter where the capture of
light dark matter is better motivated [22, 85].

Finally, let us comment on a second channel of interest:
LLP → e+e−. This may occur for a dark vector which
dominantly decays via V → e+e−, and has recently been
considered (in the context of large volume underground
detectors) for the same p d → 3He γ reaction considered
here [86]. A search for electrons and/or positron would
require accurate modeling for propagation through mag-
netic fields in the vicinity of the Earth.
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VI. CONCLUSIONS AND OUTLOOK

We have discussed simple particle physics models that
predict an MeV flux of photons produced by the Sun.
The generic requirement is the existence of some LLP
which can efficiently transport energy from the interior
(fueled by nuclear reactions) to beyond the Sun’s surface.
Provided the LLP has a sizeable branching ratio to final
states including at least one photon e.g. γγ, νγ, and/or
e+e−γ final states, one can search for energetic gamma
rays emanating from the Quiet Sun.

We find that constraints from existing data from
RHESSI, with a very conservative analysis strategy, can
probe small pockets of untouched parameter space for
both MeV scale axions and a neutrino dipole portal. In
both cases, the RHESSI analysis provides complimentary
coverage to existing search strategies (including cosmo-
logical probes such as BBN).

Our major motivation is a simple proof of principle
that MeV-scale LLPs with decay lengths larger than the
radius of the Sun can be efficiently searched for using
solar telescopes. The analysis presented here is conser-
vative and fairly crude; we define exclusions by the con-
dition that the BSM signal prediction exceeds the to-
tal signal observed in any energy window by RHESSI.
Constraints and/or discovery potential could be substan-
tially improved with a better understanding of instru-
ment backgrounds and more sophisticated analysis tech-
niques. For example, one could make use of angular pro-
files of incident photons to search for new physics, as
an LLP flux will produce a photon flux outside the stel-
lar corona with a predictable angular shape/morphology.
We encourage future missions with MeV scale instru-
mentation below the cut-off of Fermi-Lat, such as COSI
[25, 26], to consider searches for BSM particles, with the
Sun being a well-motivated engine for MeV-scale LLPs.
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Appendix A: Inefficient production mechanisms

In this section we discuss production mechanisms
which we have found to be too inefficient to allow for
detection prospects with our RHESSI analysis.

1. Mass-Mixing portal for HNLs

Another BSM model involving HNLs has N couple di-
rectly to active neutrinos through added elements in the
PMNS matrix[13, 48, 87–108]. Active neutrinos contain a
small admixture of the HNLs along with the three known
mass states,

να = UαNN +

3∑
i=1

Uαiνi , (A1)

where UαN represents the coupling of HNLs to active
neutrinos. Since the Sun only has nuclear reactions that
produce electron neutrinos, our constraint is on UeN .
The N flux from upscattering is subdominant by orders
of magnitude to that from direct production. Therefore,
the flux is given by rescaling the neutrino flux

ΦN = |UNe|2Φν

√
1−m2

N/E2
N . (A2)

For the masses considered here, there are only three decay
channels; i) N → 3ν, ii) N → νγ, and iii) N → νe+e−.
As with other production mechanisms, we only consider
signals from photons. The geometry of this decay (into a
massless neutrino and photon) is identical to the case of
the dipole portal. The decay rate for each of the processes
follows the general form

ΓN→SM ∝ G2
F |UeN |2m5

N , (A3)

which has the steep power-law dependence on mass typ-
ical of weak decays. We find that since decay lengths
are always long enough to fall outside the range given
in Eq. (1) that sensitivity from RHESSI is subdominant
to searches at Borexino (which benefits from a large de-
tector volume) and from direct laboratory searches (see
Fig. 8).

2. Captured dark matter in the Sun

If heavy dark matter, χ, has interactions beyond grav-
ity, it may scatter within large celestial bodies and be-
come gravitationally captured. The Sun, being by far
the most massive object in the solar system, is a strong
candidate in searching for the signals from captured χ
[21, 109–125].

For the case of symmetric dark matter with a long-
lived particle mediator, there is the interaction χχ̄ →
LLPs. The energies of these final observable particles
are O(mχ). However, as discussed in [112], for thermal
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FIG. 8. Excluded parameter space for HNLs in the mass
mixing model. The dashed line shows the RHESSI exclusion,
while shaded regions come from BeEST [87], PIENU [88], and
Borexino [89].

relic annihilation cross sections, short range interactions
with SM, and mχ below a few GeV, most of the χ evap-
orates from the Sun before annihilating. We note that
for dark matter with long range interaction, evaporation
may be suppressed [85] and RHESSI data could provide

interesting limits on lighter dark matter in these scenar-
ios. Also, Jupiter has low evaporation for mχ > 30 MeV
for long-range interactions (mχ > 200 MeV − 1 GeV for
short-range interactions) [22, 85].

We also considered the case of asymmetric dark mat-
ter with self-interactions via a scalar ϕ with a Yukawa
like interaction L ⊂ χ̄χϕ . As there is no annihilation,
in the absence of evaporation, the χ population grows
indefinitely. Virialized dark matter passing through the
Sun can scatter on the trapped overdensity and produce
LLPs via the bremsstrahlung-like reaction χχ → χχϕ.
In order to produce MeV gamma rays, we require heavy
dark matter, mχ ≳ 1 TeV, such that there is suffi-
cient available kinetic energy mχv

2
χ ≳ 1 MeV.7 In order

to produce a sufficiently large flux of LLPs, we require
a sizeable χχ → χχ cross section. This can only be
achieved with a light mediator for TeV scale (or heav-
ier) dark matter. The cross section relies on a small
momentum transfers. Non-relativistic kinematics, how-
ever, demand a parametrically larger momentum trans-
fer in the bremsstrahlung like reaction than for elastic
scattering. For example, demanding Eϕ ∼ O(MeV)
bremsstrahlung, requires a momentum transfer on the
order of ∆p2 ∼ mχEϕ ∼ (1 GeV)2. Due to this kine-
matic supression, we find that RHESSI is incapable of
setting competitive limits even with the most gener-
ous/optimistic model building choices to maximize the
bremsstrahlung like cross section.
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